Green Silicon Carbide for Surface Deburring, Green Sic
Negotiable | 5 Tons (MOQ) |
Min. Order:
5 Tons
Port:
Tianjin, China
Production Capacity:
50000 Tons
Payment Terms:
L/C, T/T
Luoyang Zhongsen Refractory Co., Limited
Henan, China
Last Login Date:
May 23, 2025
Main Products:
Brown Fused Alumina, White Fused Alumina, Fused Calcium Aluminate, Black Silicon Carbide, Green Silicon Carbide, Garnet, Zirconia Fused Alumina, Pink Fused Alumina, Tabular Alumina, Glass Beads
Find Similar Products
Product Description
Company Info
Basic Info.
Model NO.
F12-F1200
Natural Abrasive Type
Natural Corundum
Artificial Abrasive Type
Silicon Carbide Abrasive
Application
Machinery
Function
Surface Deburring
Source
Artificial Abrasives
Particle Size
Abrasive
Hardness
Conventional Abrasive
Mosh Hardness
9.15
Bulk Density
1.45-1.56
Free Carbon
0.15% Max
Trademark
Zhongsen
Transport Package
1m/T Big Bag, 25kg Bag and 40 Bags on a Fumigated
Specification
FEPA, GB, JIS, ISO
Origin
Henan Luoyang, China
HS Code
2818109000
Product Description
Product Description
It is generated by Quartz sand and petroleum coke or anthracite through Electric Resistance Furnace under the high temperature. It is black opaque body hexagonal crytal and Mo-Hardness is 9.15-9.5, which is after Diamond and Boron Carbide with fragile and sharp performance and a certain degree of conductive electric and heat .Physical properties of sic is: Hardness, High temperature-resistant, Abrasion, Corrosion, Radiation resistant with good Electric and Heat conductivity.
Features: Green silicon carbide is in high hardness and brittle. Its grain edges are sharp and it is of excellent capacity of heat transmission. Its purity is higher than that of the black silicon carbide.
Application: Green silicon carbide is suitable for fine grinding of and lapping hard and brittle materials such as tungsten carbides, optical glass, jewel, agate and so on
Green Silicon Carbide Chemical Analysis
Packing:
Big Bag of 1 Ton, 1.2 Tons or 1.3 Tons
25kg Woven Plastic Bag,40 Bags in a Big Bag
25kg Woven Plastic Bags,40 Bags on a Wood Pallet
25kg Paper Bag,40 Bags on a Wood Pallet
Green Silicon Carbide(SiC) is produced in an electric resistance furnace from quartz sand, petroleum coke and salt at high temperature. It's semi-transparet in green color with friability, high purity and high hardness. It's suited for grinding hard, brittle and non-metallic such as cemented carbides, optical glass, ceramics, etc
Typical Chemical Content: SiC 98.5%, Fe2O3<0.2%, Free C<0.2%
25kg Bag+Pallet, 1M/T Big Bag
Silicon carbide (SiC), also known as carborundum, is a compound of silicon and carbon with chemical formula SiC. It occurs in nature as the extremely rare mineral moissanite. Silicon carbide powder has been mass-produced since 1893 for use as an abrasive. Grains of silicon carbide can be bonded together by sintering to form very hard ceramics which are widely used in applications requiring high endurance, such as car brakes, car clutches and ceramic plates in bulletproof vests. Electronic applications of silicon carbide as light emitting diodes (LEDs) and detectors in early radios were first demonstrated around 1907, and today SiC is widely used in high-temperature/high-voltage semiconductor electronics. Large single crystals of silicon carbide can be grown by the Lely method; they can be cut into gems known as synthetic moissanite. Silicon carbide with high surface area can be produced from SiO2 contained in plant material.
Because of the rarity of natural moissanite, most silicon carbide is synthetic. It is used as an abrasive, and more recently as a semiconductor and diamond simulant of gem quality. The simplest manufacturing process is to combine silica sand and carbon in an Acheson graphite electric resistance furnace at a high temperature, between 1600 and 2500 °C. Fine SiO2 particles in plant material (e.g. rice husks) can be converted to SiC by heating in the excess carbon from the organic material.The silica fume, which is a byproduct of producing silicon metal and ferrosilicon alloys, also can be converted to SiC by heating with graphite at 1500 °C.
Synthetic SiC Lely crystalsThe material formed in the Acheson furnace varies in purity, according to its distance from the graphite resistor heat source. Colorless, pale yellow and green crystals have the highest purity and are found closest to the resistor. The color changes to blue and black at greater distance from the resistor, and these darker crystals are less pure. Nitrogen and aluminium are common impurities, and they affect the electrical conductivity of SiC.
Pure silicon carbide can be made by the so-called Lely process,in which SiC powder is sublimated in argon atmosphere at 2500 °C and redeposited into flake-like single crystals,sized up to 2×2 cm2, at a slightly colder substrate. This process yields high-quality single crystals, mostly of 6H-SiC phase (because of high growth temperature). A modified Lely process involving induction heating in graphite crucibles yields even larger single crystals of 4 inches (10 cm) in diameter, having a section 81 times larger compared to the conventional Lely process.Cubic SiC is usually grown by the more expensive process of chemical vapor deposition (CVD).Homoepitaxial and heteroepitaxial SiC layers can be grown employing both gas and liquid phase approaches.Pure silicon carbide can also be prepared by the thermal decomposition of a polymer, poly(methylsilyne), under an inert atmosphere at low temperatures. Relative to the CVD process, the pyrolysis method is advantageous because the polymer can be formed into various shapes prior to thermalization into the ceramic.
Abrasives & Cutting Tools: In the arts, silicon carbide is a popular abrasive in modern lapidary due to the durability and low cost of the material. In manufacturing, it is used for its hardness in abrasive machining processes such as grinding, honing, water-jet cutting and sandblasting. Particles of silicon carbide are laminated to paper to create sandpapers and the grip tape on skateboards.
In 1982 an exceptionally strong composite of aluminium oxide and silicon carbide whiskers was discovered. Development of this laboratory-produced composite to a commercial product took only three years. In 1985, the first commercial cutting tools made from this alumina and silicon carbide whisker-reinforced composite were introduced by the Advanced Composite Materials Corporation (ACMC) and Greenleaf Corporation.
zhongsenrefractory.en.made-in-china.com
It is generated by Quartz sand and petroleum coke or anthracite through Electric Resistance Furnace under the high temperature. It is black opaque body hexagonal crytal and Mo-Hardness is 9.15-9.5, which is after Diamond and Boron Carbide with fragile and sharp performance and a certain degree of conductive electric and heat .Physical properties of sic is: Hardness, High temperature-resistant, Abrasion, Corrosion, Radiation resistant with good Electric and Heat conductivity.
Features: Green silicon carbide is in high hardness and brittle. Its grain edges are sharp and it is of excellent capacity of heat transmission. Its purity is higher than that of the black silicon carbide.
Application: Green silicon carbide is suitable for fine grinding of and lapping hard and brittle materials such as tungsten carbides, optical glass, jewel, agate and so on
Green Silicon Carbide Chemical Analysis
Green Silicon Carbide Grit | SiC | F.C. | Fe2O3 |
F12~F90 | ≥ 99.00 | <0.20 | ≤ 0.20 |
F100~F150 | ≥ 98.50 | <0.25 | ≤ 0.50 |
F180~F220 | ≥ 97.50 | <0.25 | ≤ 0.70 |
F240~F1000 | ≥ 97.00 | <0.30 | ≤ 0.70 |
Packing:
Big Bag of 1 Ton, 1.2 Tons or 1.3 Tons
25kg Woven Plastic Bag,40 Bags in a Big Bag
25kg Woven Plastic Bags,40 Bags on a Wood Pallet
25kg Paper Bag,40 Bags on a Wood Pallet
Green Silicon Carbide(SiC) is produced in an electric resistance furnace from quartz sand, petroleum coke and salt at high temperature. It's semi-transparet in green color with friability, high purity and high hardness. It's suited for grinding hard, brittle and non-metallic such as cemented carbides, optical glass, ceramics, etc
Typical Chemical Content: SiC 98.5%, Fe2O3<0.2%, Free C<0.2%
25kg Bag+Pallet, 1M/T Big Bag
Silicon carbide (SiC), also known as carborundum, is a compound of silicon and carbon with chemical formula SiC. It occurs in nature as the extremely rare mineral moissanite. Silicon carbide powder has been mass-produced since 1893 for use as an abrasive. Grains of silicon carbide can be bonded together by sintering to form very hard ceramics which are widely used in applications requiring high endurance, such as car brakes, car clutches and ceramic plates in bulletproof vests. Electronic applications of silicon carbide as light emitting diodes (LEDs) and detectors in early radios were first demonstrated around 1907, and today SiC is widely used in high-temperature/high-voltage semiconductor electronics. Large single crystals of silicon carbide can be grown by the Lely method; they can be cut into gems known as synthetic moissanite. Silicon carbide with high surface area can be produced from SiO2 contained in plant material.
Because of the rarity of natural moissanite, most silicon carbide is synthetic. It is used as an abrasive, and more recently as a semiconductor and diamond simulant of gem quality. The simplest manufacturing process is to combine silica sand and carbon in an Acheson graphite electric resistance furnace at a high temperature, between 1600 and 2500 °C. Fine SiO2 particles in plant material (e.g. rice husks) can be converted to SiC by heating in the excess carbon from the organic material.The silica fume, which is a byproduct of producing silicon metal and ferrosilicon alloys, also can be converted to SiC by heating with graphite at 1500 °C.
Synthetic SiC Lely crystalsThe material formed in the Acheson furnace varies in purity, according to its distance from the graphite resistor heat source. Colorless, pale yellow and green crystals have the highest purity and are found closest to the resistor. The color changes to blue and black at greater distance from the resistor, and these darker crystals are less pure. Nitrogen and aluminium are common impurities, and they affect the electrical conductivity of SiC.
Pure silicon carbide can be made by the so-called Lely process,in which SiC powder is sublimated in argon atmosphere at 2500 °C and redeposited into flake-like single crystals,sized up to 2×2 cm2, at a slightly colder substrate. This process yields high-quality single crystals, mostly of 6H-SiC phase (because of high growth temperature). A modified Lely process involving induction heating in graphite crucibles yields even larger single crystals of 4 inches (10 cm) in diameter, having a section 81 times larger compared to the conventional Lely process.Cubic SiC is usually grown by the more expensive process of chemical vapor deposition (CVD).Homoepitaxial and heteroepitaxial SiC layers can be grown employing both gas and liquid phase approaches.Pure silicon carbide can also be prepared by the thermal decomposition of a polymer, poly(methylsilyne), under an inert atmosphere at low temperatures. Relative to the CVD process, the pyrolysis method is advantageous because the polymer can be formed into various shapes prior to thermalization into the ceramic.
Abrasives & Cutting Tools: In the arts, silicon carbide is a popular abrasive in modern lapidary due to the durability and low cost of the material. In manufacturing, it is used for its hardness in abrasive machining processes such as grinding, honing, water-jet cutting and sandblasting. Particles of silicon carbide are laminated to paper to create sandpapers and the grip tape on skateboards.
In 1982 an exceptionally strong composite of aluminium oxide and silicon carbide whiskers was discovered. Development of this laboratory-produced composite to a commercial product took only three years. In 1985, the first commercial cutting tools made from this alumina and silicon carbide whisker-reinforced composite were introduced by the Advanced Composite Materials Corporation (ACMC) and Greenleaf Corporation.
zhongsenrefractory.en.made-in-china.com
Send your message to this supplier
People who liked this also liked